Separating ν 's and $\overline{\nu}$'s with a non- magnetized detector Joe Grange University of Florida Project X Physics Study ## Outline - MiniBooNE and wrong-sign contamination in the Booster Neutrino Beam (BNB) - 2. Three measurements of ${f v}_{\mu}$ flux in BNB ${f \overline{v}}_{\mu}$ beam - 3. Technique utility out to PX era - MiniBooNE and wrong-sign contamination in the Booster Neutrino Beam (BNB) - 2. Three measurements of v_{μ} flux in BNB \overline{v}_{μ} beam - 3. Technique utility out to PX erc ## Booster Neutrino Beam ### Booster Neutrino Beam Magnetic horn with reversible polarity focuses either neutrino or anti-neutrino parent mesons ("neutrino" vs "anti-neutrino" mode) ### MiniBooNE Flux * Flux prediction for "right signs" based exclusively on external data - no in situ tuning HARP collaboration, Eur. Phys. J. C52 29 (2007) MiniBooNE collaboration, Phys. Rev. D79, 072002 (2009) - Dedicated pion production data taken by HARP experiment to predict neutrino flux at MiniBooNE - A spline fit to these data brings flux uncertainty to ~9% #### MiniBooNE Flux - * ~9% errors only true for pions produced in HARP-covered phase space - Due to large proton background, pion production below 30 mrad not reported - * While not a serious issue for neutrino mode (top plot), severe complication for antineutrino mode (bottom) # Why so different? * Cross section: at MiniBooNE energies (E,~1 GeV), neutrino cross section ~ 3x higher than anti-neutrino $$\frac{d\sigma}{dQ^2} = \frac{M^2 G_F^2 |V_{ud}|^2}{8\pi E_{\nu}^2} \left[A(Q^2) \pm B(Q^2) \left(\frac{s-u}{M^2} \right) + C(Q^2) \left(\frac{s-u}{M^2} \right)^2 \right]$$ Flux: leading particle effect creates ~ 2x as many π+ as π- ## How wrong signs contribute to flux * Wrong-sign pions escape magnetic deflection and contribute to the anti-neutrino beam via low angle production * In anti-neutrino mode low-angle production is a *crucial* flux region and we do not have a reliable prediction ### MiniBooNE detector - * 6.1m radius sphere houses 800 tons of pure mineral oil. - * 1520 Photo Multiplier Tubes uniformly dispersed in 2 regions of tank (240 veto, 1280 inner tank) - * No B-field! - * in situ calibration systems: - Laser system calibrates PMT response, tracks oil quality - Cosmic ray muon system calibrates detector response to muons and associated decay michel electrons Nucl. Instr. Meth. A599, 28 (2009) #### CCQE Events in MiniBooNE CCQE is the most prevalent interaction at MiniBooNE's energy range, accounting for ~40% of all events. - Booster Neutrino Beam (BNB) - 2. Three measurements of ${f v}_{\mu}$ flux in BNB $\overline{{f v}}_{\mu}$ beam - 3. Technique utility out to PX era - * Three independent and complementary measurements of the wrong-sign background: - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample - 3. Measuring how often muon decay electrons are produced (exploits μ- nuclear capture) - * Three independent and complementary measurements of the wrong-sign background: - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample - 3. Measuring how often muon decay electrons are produced (exploits μ^- nuclear capture) First measurement of the ν_μ content of a $\overline{\nu}_\mu$ beam using a non-magnetized detector. Phys. Rev. D81: 072005 (2011) - * General strategy: isolate samples sensitive to the ν_μ beam content, apply the measured cross sections from neutrino mode (CCQE, CC π^+) - * Crucial application of BooNE-measured ν_{μ} σ 's $$\frac{\text{Rate}^{\text{data}}}{\text{Rate}^{\text{sim}}} = \frac{\Phi^{\text{true}} \times \sigma}{\Phi^{\text{sim}} \times \sigma} = \frac{\Phi^{\text{true}}}{\Phi^{\text{sim}}}$$ * The level of data-simulation agreement then reflects the accuracy of the ν_μ flux prediction * Important to bin in E_{ν} as finely as possible to check ν_{μ} flux spectrum Different energies have different relative HARP coverage too - might expect flux accuracy to be f(E_v) - * Three independent and complementary measurements of the wrong-sign background: - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample - 3. Measuring how often muon decay electrons are produced (exploits μ nuclear capture) # Fitting the outgoing muon angular distribution * Neutrino vs anti-neutrino CCQE cross sections differ exclusively by an interference term that changes sign between the two $$\frac{d\sigma}{dQ^2} = \frac{M^2 G_F^2 |V_{ud}|^2}{8\pi E_{\nu}^2} \left[A(Q^2) \pm B(Q^2) \left(\frac{s-u}{M^2} \right) + C(Q^2) \left(\frac{s-u}{M^2} \right)^2 \right]$$ * The divergence is more pronounced at higher Q², which is strongly correlated with backward scattering muons # Fitting the outgoing muon angular distribution * We form a linear combination of the neutrino and anti-neutrino content to compare with CCQE data: Scale the $\overline{\mathbf{v}}_{\mathbf{n}}$ template by " $\alpha_{\overline{\nu}}$ " # Fitting the outgoing muon angular distribution - * Results indicate the ν_{μ} flux is over-predicted by ~30% - * Fit also performed in bins of reconstructed energy; consistent results indicate flux spectrum shape is well modeled | $\mathbf{E}^{\mathbf{QE}}_{\bar{\nu}}(\mathrm{MeV})$ | $lpha_ u$ | $lpha_{ar{ u}}$ | |--|-----------------|-----------------| | < 600 | 0.65 ± 0.22 | 0.98 ± 0.18 | | 600 - 900 | 0.61 ± 0.20 | 1.05 ± 0.19 | | > 900 | 0.64 ± 0.20 | 1.18 ± 0.21 | | Inclusive | 0.65 ± 0.23 | 1.00 ± 0.22 | ## Model dependence * Though the ν_{μ} CCQE scattering template is known (from our measurement), the result is correlated to the (unknown) anti- ν_{μ} distribution and therefore biased * In Project X era, σ's should be much better known and this technique could be very powerful - * Three independent and complementary measurements of the wrong-sign background. - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample - 3. Measuring how often muon decay electrons are produced (exploits μ nuclear capture) # $CC\pi^+$ sample formation u_{μ} The neutrino induced resonance channel leads to three leptons above Cherenkov threshold - 1. Primary muon - 2. Decay electron - 3. Decay positron # $CC\pi^+$ sample formation u_{μ} Due to nuclear π⁻ capture, the corresponding anti-neutrino interaction has only two: - 1. Primary muon - 2. Decay positron # $CC\pi^+ \nu_{\mu}$ flux measurement - * With the simple requirement of two decay electrons subsequent to the primary muon, we isolate a sample that is ~80% neutrino-induced. - * Data/simulation ratios in bins of reconstructed energy indicate the neutrino flux is overpredicted in normalization, while the spectrum shape looks fine | 700 - 800 | 0.79 ± 0.10 | | |-------------|-----------------|--| | 800 - 900 | 0.81 ± 0.10 | | | 900 - 1000 | 0.88 ± 0.11 | | | 1000 - 1200 | 0.74 ± 0.10 | | | 1200 - 2400 | 0.73 ± 0.15 | | | Inclusive | 0.76 ± 0.11 | | $\nu_{\rm u} \Phi$ scale 0.65 ± 0.10 E_v∆ (MeV) 600 - 700 CC π + σ measurement: Phys. Rev. D83, 052007 (2011) - * Three independent and complementary measurements of the wrong-sign background: - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample - 3. Measuring how often muon decay electrons are produced (exploits μ^- nuclear capture) - * CC events typically observe both μ +e two reasons why we may not observe the decay electron: - 1. Michel electron detection efficiency - 2. μ^- nuclear capture (ν_μ CC events only) - * We isolate a > 90% CC sample for both μ -only and μ +e samples - * ~8% of stopped μ^- captures on 12 C, but some nuclear de-excitation products (γ 's,n's) can fake Michel electron - "regain" Michel-like event following ~6% of μ⁻ captures - * v-mode data has very little wrong-sign contribution, so we use the observed μ+e to μ-only migration rate to calibrate nuclear deexcitation and Michel detection models * By requiring (μ -only/ μ +e)^{data} = (μ -only/ μ +e)^{MC} and normalization to agree in the μ +e sample we can calculate a v_{μ} flux scale α_{ν} and a rate scale $\alpha_{\bar{\nu}}$ $$\frac{\mu}{\mu + e}^{\text{data}} = \left(\frac{\alpha_{\nu} \nu^{\mu} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu}}{\alpha_{\nu} \nu^{\mu + e} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu + e}}\right)^{\text{MC}}$$ Predicted neutrino content in the μ +e sample, for example * By requiring $(\mu\text{-only}/\mu\text{+e})^{\text{data}}$ = $(\mu\text{-only}/\mu\text{+e})^{\text{MC}}$ and normalization to agree in the $\mu\text{+e}$ sample we can calculate a v_{μ} flux scale α_{ν} and a rate scale $\alpha_{\bar{\nu}}$ $$\frac{\mu}{\mu + e}^{\text{data}} = \left(\frac{\alpha_{\nu} \nu^{\mu} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu}}{\alpha_{\nu} \nu^{\mu + e} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu + e}}\right)^{\text{MC}}$$ Results: **PRELIMINARY** | Parameter | $E_{\nu}^{QE} ({ m GeV})$ | | | |-----------------|---------------------------|-----------------|-----------------| | | < 0.9 | > 0.9 | All | | $\alpha_{ u}$ | 0.79 ± 0.14 | 0.81 ± 0.16 | 0.80 ± 0.13 | | $lpha_{ar{ u}}$ | 1.14 ± 0.22 | 1.14 ± 0.22 | 1.14 ± 0.22 | # Model dependence? - * The μ +e sample is ~60% anti- v_{μ} , how much model dependence enters from anti- v_{μ} σ 's? - * Flux measurement negligibly sensitive to anti- v_{μ} σ : model would have to be wrong by > 50% to see an impact on extracted v_{μ} Φ (it's not) - * This is accomplished with 8% μ⁻ capture for carbon. Can do much better with argon at ~75%! #### Neutrino flux measurement summary Discrepancy with prediction appears to be in normalization only flux shape is well modeled. 13% error on final measurement ## Using your own σ measurements * Most detector errors cancel by correcting anti- ν mode MC for σ 's observed in the ν exposure * Similar to two-detector osc experiments, but instead of one beam + 2 detectors, we use two beams + one detector Φ measurement insensitive to FSI! # Strategy revisited - * General strategy: isolate samples sensitive to the ν_μ beam content, apply the measured cross sections from neutrino mode (CCQE, CC π^+) - * Crucial application of BooNE-measured ν_{μ} σ 's $$\frac{\text{Rate}^{\text{data}}}{\text{Rate}^{\text{sim}}} = \frac{\Phi^{\text{true}} \times \sigma}{\Phi^{\text{sim}} \times \sigma} = \frac{\Phi^{\text{true}}}{\Phi^{\text{sim}}}$$ * The level of data-simulation agreement then reflects the accuracy of the ν_μ flux prediction # Strategy revisited * General strateay: isolate samples sensitive to the Takes hadro-production data, uses it to place similar constraints on the flux region not measured on agreement then the $u_{_{\mathfrak{U}}}$ flux prediction # Strategy revisited - 1. Booster Neutrino Beam (BNB) - 2. Three measurements of v_{μ} flux in BNB \overline{v}_{μ} beam - 3. Technique utility out to PX era # Current and future expts - * Nova (neither detector magnetized) - * Minerva: can get powerful statistical increases, more kinematic coverage (via μ angle) if use μ's stopped in main detector ## Current and future expts - * LBNE: at user's meeting we heard Steering Group "strongly favors" new beamline with single LAr-TPC detector at Homestake. - * If no B-field, μ^- capture technique could be very powerful in wrong-sign discrimination w/o ND - * 8% μ^{-} capture in carbon gives enough statistical power to separate ν from anti- ν in energy bins, argon has ~75% Phys Rev C 35 ,2212 (1987) - * almost event-by-event discrimination without Bfield! - * ICARUS has demonstrated Michels can be reconstructed well in argon Eur Phys J C33, 233 (2004) ## Other handles - * Fit μ lifetime to combination ν + anti- ν templates - * different way of using μ capture - * Nuclear recoil for "classical" CCQE, expect outgoing p for v_{μ} , outgoing n for anti- v_{μ} events. A few issues: - * meson exchange currents predict combo. of p+n ejection in both cases (unclear energy dependence, nucleon kinematics) - * final state interactions - * proton detection modeling - * we ought to be much better informed come the PX era #### Conclusions - * Though MiniBooNE is unmagnetized, modelindependent statistical techniques measure the ν_μ content in the ν_μ beam to ~13% uncertainty - * This is the first demonstration of a set of techniques that could well be used in the near future for CP-violation, mass hierarchy and σ measurements